On the Sample Information About Parameter and Prediction
نویسندگان
چکیده
The Bayesian measure of sample information about the parameter, known as Lindley’s measure, is widely used in various problems such as developing prior distributions, models for the likelihood functions and optimal designs. The predictive information is defined similarly and used for model selection and optimal designs, though to a lesser extent. The parameter and predictive information measures are proper utility functions and have been also used in combination. Yet the relationship between the two measures and the effects of conditional dependence between the observable quantities on the Bayesian information measures remain unexplored. We address both issues. The relationship between the two information measures is explored through the information provided by the sample about the parameter and prediction jointly. The role of dependence is explored along with the interplay between the information measures, prior and sampling design. For the conditionally independent sequence of observable quantities, decompositions of the joint information characterize Lindley’s measure as the sample information about the parameter and prediction jointly and the predictive information as part of it. For the conditionally dependent case, the joint information about parameter and prediction exceeds Lindley’s measure by an amount due to the dependence. More specific results are shown for the normal linear models and a broad subfamily of the exponential family. Conditionally independent samples provide relatively little information for prediction, and the gap between the parameter and predictive information measures grows rapidly with the sample size. Three dependence structures are studied: the intraclass (IC) and serially correlated (SC) normal models, and order statistics. For IC and SC models, the information about the mean parameter decreases and the predictive information increases with the correlation, but the joint information is not monotone and has a unique minimum. Compensation of the loss of parameter information due to dependence requires larger samples. For the order statistics, the joint information exceeds Lindley’s measure by an amount which does not depend on the prior or the model for the data, but it is not monotone in the sample size and has a unique maximum.
منابع مشابه
Classic and Bayes Shrinkage Estimation in Rayleigh Distribution Using a Point Guess Based on Censored Data
Introduction In classical methods of statistics, the parameter of interest is estimated based on a random sample using natural estimators such as maximum likelihood or unbiased estimators (sample information). In practice, the researcher has a prior information about the parameter in the form of a point guess value. Information in the guess value is called as nonsample information. Thomp...
متن کاملBayesin estimation and prediction whit multiply type-II censored sample of sequential order statistics from one-and-two-parameter exponential distribution
In this article introduce the sequential order statistics. Therefore based on multiply Type-II censored sample of sequential order statistics, Bayesian estimators are derived for the parameters of one- and two- parameter exponential distributions under the assumption that the prior distribution is given by an inverse gamma distribution and the Bayes estimator with respect to squared error loss ...
متن کاملBayesian Prediction of future observation based on doubly censored data under exponential distribution
In many experiments about lifetime examination, we will faced on restrictions of time and sample size, which this factors cause that the researcher can’t access to all of data. Therefore, it is valuable to study prediction of unobserved values based on information of available data. in this paper we have studied the prediction of unobserved values in two status of one-sample and two-sample, whe...
متن کاملCombining Neural Network with Genetic Algorithm for prediction of S4 Parameter using GPS measurement
The ionospheric plasma bubbles cause unpredictable changes in the ionospheric electron density. These variations in the ionospheric layer can cause a phenomenon known as the ionospheric scintillation. Ionospheric scintillation could affect the phase and amplitude of the radio signals traveling through this medium. This phenomenon occurs frequently around the magnetic equator and in low latitu...
متن کاملBayesian Prediction Intervals for Future Order Statistics from the Generalized Exponential Distribution
Let X1, X2, ..., Xr be the first r order statistics from a sample of size n from the generalized exponential distribution with shape parameter θ. In this paper, we consider a Bayesian approach to predicting future order statistics based on the observed ordered data. The predictive densities are obtained and used to determine prediction intervals for unobserved order statistics for one-sample ...
متن کامل